Characterization of Lipschitz Continuous Difference of Convex Functions

نویسندگان

  • Abderrahim Hantoute
  • Juan Enrique Martínez-Legaz
چکیده

We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our criterion relies on the intersection of the ε-subdifferentials of the involved functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distance between subdifferentials in the terms of functions

For convex continuous functions f, g defined respectively in neighborhoods of points x, y in a normed linear space, a formula for the distance between ∂f(x) and ∂g(y) in terms of f, g (i.e. without using the dual) is proved. Some corollaries, like a new characterization of the subdifferential of a continuous convex function at a point, are given. This, together with a theorem from [4], implies ...

متن کامل

A differential operator and weak topology for Lipschitz maps

We show that the Scott topology induces a topology for real-valued Lipschitz maps on Banach spaces which we call the L-topology. It is the weakest topology with respect to which the L-derivative operator, as a second order functional which maps the space of Lipschitz functions into the function space of non-empty weak* compact and convex valued maps equipped with the Scott topology, is continuo...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds

Dini derivative on Riemannian manifold setting is studied in this paper. In addition, a characterization for Lipschitz and convex functions defined on Riemannian manifolds and sufficient optimality conditions for constraint optimization problems in terms of the Dini derivative are given.

متن کامل

Necessary Conditions without Differentiability Assumptions in Unilateral Control Problems*

We derive two theorems combining existence with necessary conditions for the relaxed unilateral problem of the optimal control of ordinary differential equations in which the functions that define the problem are Lipschitz-continuous in the state variables. These theorems generalize the results presented in a previous paper [8] by the addition of unilateral constraints on the state and control ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2013